On a conjecture by Karlin and Szegö

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multinomial Probabilities, Permanents and a Conjecture of Karlin and Rinott

The probability density function of a multiparameter multinomial distribution can be expressed in terms of the permanent of a suitable matrix. This fact and certain results on conditionally negative definite matrices are used to prove a conjecture due to Karlin and Rinott.

متن کامل

Szegö on Jacobi Polynomials

One of the interesting features in the development of analysis in the twentieth century is the remarkable growth, in various directions, of the theory of orthogonal functions. Two brilliant achievements on the threshold of this century—Fejér's paper on Fourier series and Fredholm's papers on integral equations—have been acting as a powerful inspiring source of attraction, inviting analysts to d...

متن کامل

Proof of the Feldman-Karlin conjecture on the maximum number of equilibria in an evolutionary system.

Feldman and Karlin conjectured that the number of isolated fixed points for deterministic models of viability selection and recombination among n possible haplotypes has an upper bound of 2(n)-1. Here a proof is provided. The upper bound of 3(n-1) obtained by Lyubich et al. (2001) using Bézout's Theorem (1779) is reduced here to 2(n) through a change of representation that reduces the third-ord...

متن کامل

A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

‎The excessive index of a bridgeless cubic graph $G$ is the least integer $k$‎, ‎such that $G$ can be covered by $k$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe as...

متن کامل

Sam Karlin: a personal appreciation.

In the 1960s Karlin and Bodmer established an active programme in mathematical population genetics with NIH support that, in turn, supported the work of Ewens and Feldman with Karlin. Subsequently Karlin established a similar programme in Israel. The overall contributions of Karlin to population genetics and molecular biology are briefly reviewed from a personal perspective.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1996

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-96-03144-9